1.理解成比例线段以及项、比例外项、比例内项、第四比例项、比例中项等的概念.
2.掌握比例基本性质和合分比性质.
3.通过通过的应用,培养学习的计算能力.
4.通过比例性质的教学,渗透转化思想.
5.通过比例性质的教学,激发学生学习兴趣.
二、教学设计
先学后做,启发引导
三、重点及难点
1.教学重点 比例性质及应用.
2.教学难点 正确理解成比例线段及应用.
四、课时安排
1课时
五、教具学具准备
股影仪、胶片、常用画图工具
六、教学步骤
【复习提问】
1.什么是线段的比?
2.已知 这两条线段的比是 吗,为什么?
【讲解新课】
1.比例线段:见教材p203页。
如:见教材p203页图5-2。
又如:
即a、b、c、d是成比例线段。
注:①已知 问这四条线段成比例吗?
(答:成比例。 ,这里与顺序无关)。
②若已知a、b、c、d是成比例线段,是指 不能写成 (在说四条线段成比例时,一定要将这四条线段按顺序列出,这里与顺序有关)。
板书教材p203页比例线段的一些附属概念。
2.比例的性质:
(1)比例的基本性质:如果 ,那么 。
它的逆命题也成立,即:如果 ,那么 。
推论:如果 ,那么 。
反之亦然:如果 ,那么 。
①基本性质证明了“比例式”和“等积式”是可以互化的。
②由 ,除可得到 外,还可得到其它七个比例式。即由一个等积式 ,可写成八个不同的比例式(让学生试写)。然后教师教给方法。即:先按左:右=右:左“写出四个比例式。 。再由等式的对称性写出另外四个比例式: 。注意区别与联系。
③用比例的基本性质,可检查所作的比例变形是否正确。即把比例式化成等积式,看与原式所得的等积式是否相同即可。
④等积化比例、比例化等积是本章一个重要能力,要使学生达到非常熟练的程度,以利于后面学习。
(2)合比性质:如果 ,那么
证明:∵ ,∴ 即:
同理可证: (找学生板演)
(3)等比性质:如果
那么
证明:设 ;则
∴
等比性质的证明思路及思想非常重要,它是解决数学中连比问题的通法,希望同学们认真体会,务必掌握。
例1(要求了解即可)
(1)已知: ,求证: 。
证明:∵ ,∴
“通法”:∵ ,∴ 即
(2)已知: ,求证: 。
方法一:
方法二:
(1)÷(2)得:
【小结】
(1)比例线段的概念及附属概念。
(2)比例的基本性质及其应用。
八、布置作业
(1)求
① ② ③
(2)求下列各式中的x
① ② ③ ④
九、板书设计
比例线段(二) 1.比例线段: 教师板书定义 ……… 比例线段的附属概念 ……… | 2.比例的性质 (1)比例基本性质 ………… 注意:(1) ② ③ | 3.课堂练习 |